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Motor Mechanics:
Forces on a Molecular Motor



Forces on a Motor
“...gravitation is forgotten, and the viscosity of the liquid,...,the molecular

Sshocks of the Brownian movement, .... Make up the physical

environment.... The predominant factor are no longer those of our scale; we
have come to the edge of a world of which we have no experience, and where
all our preconceptions must be recast”. - D’Arcy Thompson.  oN GROWTH

AND FORM

Dominant Forces on a Motor The Complete Revised Edition

External Force Viscous drag Thermal
(Conservative) (Dissipative) (Random)

DArcy Weneworth Thompson

L
Nan et al. ChemPhysChem (2008)



Motor Thermodynamics:
Bypassing Laws and Beating Limits
by operating
Far from Equilibrium



Fundamental Questions

« How do force-generating molecular machines exploit noise for energy
transduction without violating the 2" Law of thermodynamics?

« How do information-processing machines achieve accuracy far higher than
the upper limits allowed by the laws of thermodynamics?
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Hirokawa, Nitta, Okada, Nat. Rev. Mol. Cell Biol. 10, 877 (2009).

Genetically varied the number of charged amino acids on KIF1A and “digested” E-hook.
Conclusion: Electrostatic attraction between the K-loop of KIF1A and E-hook of MT acts as a
tether and enables 1-dimensional diffusion of KIF1A along MT till release of the products of
hydrolysis and re-binding to MT: BROWNIAN RATCHET (EXPLOITING Noise for Motility)

Nishinari, Okada, Schadschneider & Chowdhury, Phys. Rev. Lett (2005);
Greulich, Garai, Nishinari, Schadschneider, Chowdhury, Phys. Rev. E (2007).



Exploiting NOISE for Directed Movement of Motors
“Sisyphus” at the Nano-scale: Brownian Ratchet

A Brownian motor does not violate
2"d |law of thermodynamics as it
operates far from equilibrium
where the 2" |aw is not applicable.

R.D.Astumian , Scientific American, July, 2001
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Stochastic (Chemo-)Mechanical
Kinetics of a motor:

Hopping on a “Network”



Master equation: general form for “States and Rates”
P.(t) = Probability of finding the “particle” in the discrete state n at time t.

dP,()dt= 2, Pn() WIm —n) - 3, Py(t) W(n —m’)

N ) N )
Y Y

GAIN terms Loss terms

W(n — m) = Probability of transition n —m per unit time

(“rate constant”).

Markov Process: |
Frogin a Lily Pond




The discrete mechano-chemical states of the machine form the vertices of
a network (graph) while the directed edges denote the allowed transitions.

Machine operation, i.e., its stochastic kinetics, is modeled as a Markov
process in a heat bath at a constant temperature and it is formulated in
terms of master equations. Dutta and Chowdhury,

Sharma and Chowdhury, $ Bull. Math. Biol. (2017)
Phys. Biol. (2011) o
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purpose of this article is to review some of the mathe. ime-dependent solutions m the “physic

matical and physical techniques which have turned out to the region where . Free Energy
vield appropriate descriptions of such nonequlllbrlum N Transduction and
situations, The starting point of =11 #hans frabeisnnn on e e e I BlOCherleCG!

a master equation formulation o Cycle Kinetics

eguation Terrell L. Hill
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expression for (X )/ [E]s is the sum of the several ~ Since the net rate of production®
different numerators. _ d(P) _ {ks(EP) — ky(E) (P)}[Elo
A simple example will serve to illustrate this dd ~ (E) + (ES) + (EP)
ffno(ﬁg% enfﬁrierggﬁiﬁ?]ﬁ? séré: diP) _ (Raleakes(S) — hadeo(P) } [E]o
CleS thus ea:Ch term ln the ex- dt kzk5 ‘I— kzk4 +‘ kaks + (S) (klkﬁ + klkd + k1k3) + (P) (k2k6 "‘|" kBkG +‘ ktkﬁ)
pression for the relative concentration of E, ES or It is to be noted that the patterns of line seg-
EP contains 2 rate constants and the approprlate ments which are the schematic representations of
ey kea Is the three numerator terms in the expressions for
E+8TZESTZEP ZE+P (EX,)/[E], are the same for each of the enzyme-
IRE TRANSACTIONS ON CIRCUIT THEORY March Gustav Kirchoff

On the Solution of the Equations Obtained from the
Investigation of the Linear Distribution of
Galvanic Currents™

By G. KIRCHHOFF
TransLaTED BY J. B. O’TOOLET




Elongation Cycle
of Translation by
RIBOSOME

_ A(T{(G)) + A(TZ(G)) + A(TL(G)) + A(TL(G)) + A(TL°(G)) + A(Ti*(G))
S

_ A(T3(G)) + A(T3°(G)) + A(T27(G))
S

_ A(T$(G))
S

_ A(TZ(G)) + A(T4°(G))
S

Pa

A(Ts(G))
S
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A(Ts*(G)) + A(Ts’(G))

T.(/JJ) (G) 06 = .

1

i-directed [-th maximal tree _ A(T(G)

on directed graph G b7 S
Wong, Dutta, Chowdhury, Gunawardena, to be published (2017)




Fundamental Questions on times taken by a motor for
various stochastic chemo-mechanical kinetic processes:
First-Passage times

There are multiple pathways, each with multiple intermediate states with distinct
transition rates, between the two arbitrary nodes of the directed network of
mechano-chemical states.

 What is the distributions of times taken for the transition between two
given states (a First-Passage Time) and how does this time depend on the
topology of the landscape/network?

* How does the landscape / directed network get altered by physical (force)
or chemical (ligand binding and/or reaction, particularly fuel "burning’)
perturbation and how does the average rate depend on the force and
fuel/substrate concentration?
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How much time does the drunkard take to reach
the door of his house for the first time?

J. Grasman
0O.A. van Herwaarden

David Holcman - Zeey Schuss

A Gulde to Asymptotic Methods

First-Passage _ e
Processes Stochastic Fokker-Planck

Equation

Nartow Escape e
in Molecular and
Cellular Biology
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Stochastic pause-and-translocation of a ribosome: DWELL TIME Distribution
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Wen, ..., Noller, Bustamante and Tinoco Jr., Nature (2008)

Basu & Chowdhury, Phys. Rev. E (2007)

Garai, Chowdhury, Ramakrishnan, Phys. Rev E (2009)
Garai, Chowdhury, Chowdhury, Ramakrishnan, Phys.
Rev. E (2009)

Sharma & Chowdhury, Phys. Rev. E (2010)
Sharma & Chowdhury, Phys. Biol. (2011)
Sharma & Chowdhury, J. Theor Biol. (2011)
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Figure 6. The probability density of the dwell times are plotted for
a few different values of the parameter w,,.
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Sharma & Chowdhury,
Phys. Biol. (2011)

Average velocity of a Ribosome Motor:
Dependence on substrate concentration

Garai, Chowdhury, Chowdhury
and Ramakrishnan, PRE (2009)

Leonor Michaelis Maud Menten

»

1 1 Ky 1 A Generalized Michaelis-Menten Eqn.
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Effects of Random Translational error on the averase cneed
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Reverse Engneering
Natural Nano-Machines:
Number of Nodes on the “Network”



Theoretical Model

Forward Problem
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sioned drawings for parts procurement. Document formats are described
for recording information and data in the reverse engineering process that
are synergistic with the method recommended for use in guiding that
nrocess. The documentation <novested directs the reverse ensineering

How can the stochastic kinetic model of operation of a nano-machines,
l.e., the number of nodes and the rates of transitions indicated by the
directed links of the network of states, be extracted by the methods

of reverse engineering?




Extracting Number of Nodes in the Network from Fluctuation Data:
Reverse Engineering Molecular machines

Cycle Time (Dwell Time at each position on the track)
IS a random variable. What information on the kinetic
scheme can we extract from the experimentally
measured distribution of Cycle Times?

As the simplest example, assume:

() Unbranched cycle,

(i) Fully irreversible steps; and

(i) Rates of all steps to be the same (k).

Let us calculate the randomness parameter

R = (<t?> - <t>?)/<t>?
Schnitzer & Block, Cold Spring Harbor Symp. (1995)
From the Cycle Time Distribution for such a cycle with N number of steps,

(Gamma distribution, also called Erlang Distribution in Queuing Theory)

f(t) = kN tN-1 ekt /T°(N), R = 1/N



Randomness parameter in a model of translation by a Ribosome
Garai, Chowdhury, Chowdhury and Ramakrishnan, Phys. Rev. E 80, 011908 (2009)
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R would have regained its maximum value 1 at very high tRNA conc. if in that
regime kinetics were dominated by a single rate-limiting step.

But, saturation of R at a value smaller than 1 at high tRNA concentration implies
more than one rate-limiting steps when tRNA supply is no longer rate-limiting.



GSlI: Classically- configured tRNA, GSII: Hybrid- configured tRNA,
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Fei et al.
Nat. Str.
Mol. Biol.
(2011)
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Eq. occupation probabilities are obtained from cryo-EM data. The transition rates from
1 to 4 and 4 to 1 are extracted from smFRET. The corresponding exact expressions are
derived using formalisms of Eq. Stat. mech. and mean First-Passage Time,
respectively. Analysis of the resulting equations establish existence of two short-lived
intermediate states.
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Kinz-Thmpson,
Sharma, Frank,
/ M Gonzalez Jr.
¥ ok > ,
',/ ¢ y Chowdhury,
/ J. Phys. Chem. B
(2015)




Traffic-like Collective Movement
of
Molecular Motors on Filamentous Tracks
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Polysome: Ribosome Traffic on a single mRNA
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Figure 4. An interior section of an asymmetric exclusion process
with extended particles of size £ = 3. The individual particles
occlude three of the lattice sites on which the hops occur.
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Basu & Chowdhury, Phys. Rev. E (2007)
Garai, Chowdhury, Chowdhury, Ramakrishnan, Phys. Rev. E (2009)
Sharma & Chowdhury, J. Theor. Biol. (2011)




Transcriptional Interference
Ghosh, Bameta, Ghanti, Chowdhury, J. Stat. Mech.: Theor. & Expt. (2016)
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Anterograde IFT Intraflagellar Transport (IFT)
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Traffic-like phenomena in Unconventional Translation:
Recoding by “Programmed Error”

Non-canonical Initiation:
Internal Ribosome Entry (

Aba O

AUG
Mishra and Chowdhury, Phys. Rev. E 95, 062117 (2017)
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Mishra, Schutz & Chowdhury EPL 114, 68005 (2016)
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