Nanomaterials-Based Light-Harvesting Systems for Potential Applications

AMITAVA PATRA

Department of Materials Science Indian Association for the Cultivation of Science Kolkata 700 032, India

28th Mid-Year Meeting of the Indian Academy of Sciences 30th June – 1st July 2017, Indian Institute of Science, Bengaluru The development of the efficient artificial light harvesting system is a highly active area of research in order to mimic natural photosynthesis and convert solar energy into renewable energy.

Emphasis has been given to design and develop efficient nanomaterials based light harvesting Systems

Several strategies have been undertaken......

The efficient antenna system should have very high molar extinction co-efficient, excellent photostability and ability to transfer its energy. Most fundamental processes in Light harvesting systems: Exciton dynamicsCharge transferEnergy Transfer

Exciton formation

Luminescent

Materials

 Recombination
 Charge Separation
 Energy Transfer

 Image: Separation
 Image: Separation
 Image: Separation

 Image: Separati

Nora Blactionei Ree Barrobintaition

In the case of photovoltaic applications, photocurrent generation occurs due to charge migration of photo generated electrons and holes of semiconductor nanoparticles toward opposite electrodes.

However, the photo generated electrons and holes of semiconductor NP are used for reduction and oxidation reactions to facilitate chemical conversion in the case of photocatalysis.

Outline

Exciton dynamics

□Interfacial charge transfer in hybrid system

Energy transfer in hybrid system

Conclusions

CHEMICAL REVIEWS

Review

pubs.acs.org/CR

Nanoscale Strategies for Light Harvesting

Simanta Kundu and Amitava Patra*

Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India

ABSTRACT: Recent advances and the current status of challenging light-harvesting nanomaterials, such as semiconducting quantum dots (QDs), metal nanoparticles, semiconductor-metal heterostructures, π -conjugated semiconductor nanoparticles, organic-inorganic heterostructures, and porphyrin-based nanostructures, have been highlighted in this review. The significance of size-, shape-, and composition-dependent exciton decay dynamics and photoinduced energy transfer of QDs is addressed. A fundamental knowledge of these photophysical processes is crucial for the development of efficient light-harvesting systems, like photocatalytic and photovoltaic ones. Again, we have pointed out the impact of the metal-nanoparticle-based surface energy transfer process for developing light-harvesting systems. On the other hand, metal-semiconductor hybrid nanostructures are found to be very promising for photonic applications due to their exciton-plasmon interactions. Potential light-harvesting systems based on dye-doped π -conjugated semiconductor polymer nanoparticles and self-assembled structures of π -conjugated polymer are highlighted. We also discuss the significance of porphyrin-based

nanostructures for potential light-harvesting systems. Finally, the future perspective of this research field is given.

Exciton Dynamics

Issues:

How the shape, size and composition of QDs influence the carrier relaxation dynamics of photo-excited QDs.
How the surface trap state influences decay kinetics due to surface curvature and lattice strain
A stochastic model of carrier relaxation dynamics of QDs has been proposed.

Relaxation Dynamics of Anisotropic Shaped CdS Nanoparticles

Suparna Sadhu and Amitava Patra*

Department of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700 032, India

Lattice Strain Controls the Carrier Relaxation Dynamics in $Cd_xZn_{1-x}S$ Alloy Quantum Dots

Suparna Sadhu and Amitava Patra*

Department of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700 032, India

Stochastic model for decay dynamics: excited state Surface **k**_c trap states **k**f k_{nr} ground state

Assumption:

• The number of surface traps present on the NCs surface follows Poisson distribution

$$\Phi(n) = (m^n/n!) \exp(-m)$$

The ensemble averaged decay curve

$$I_{t} = I_{0} \sum_{n_{t}=0}^{\alpha} \sum_{n_{t}'=0}^{\alpha} \Phi(n_{t}) \Phi(n_{t}') \exp[-\{Ak_{f} + B(k_{c} + n_{t}k_{q}) + n'_{t}k_{nr}\}t]$$

 n_{t} = the number of surface trap states participate in luminescence quenching m_t average number of surface traps in quenching; m_t average number of surface sites for NR

Overview of the values of carrier relaxation parameters using Stochastic Model

System	χ^2	A	k _f (ns⁻¹)	В	k _c	m _t k	k _q (ns⁻¹)	m _t ′	
Sphere	0.97	0.029	0.151	0.098	0.13	11.2	1.27	1.1	
Rod	0.91	0.017	0.129	0.119	0.132	21.9	1.29	1.99	
	0.87								
Triangle		0.020	0.093	0.129	0.128	34.5	1.23	2.5	

 m_t average number of surface traps; m_{t^\prime} average number of surface sites for NR relaxation

n_t = the number of surface trap states participate in luminescence quenching

□ Interfacial Charge Transfer in Hybrid Systems

Photoinduced Electron TransferPhotoinduced Hole Transfer

Electron Transfer Process in QD-Porphyrin-GO Hybrid System

ACS Sustainable Chem. Eng. 2017, 5, 3002–3010

Ultrafast electron transfer process

System	$ au_1(\mathbf{a}_1)$	$ au_2(a_2)$
	(ps)	(ps)
Porphyrin	-	195
Porphyrin/CdTeSe	25.22	174
	(0.45)	(0.55)
Porphyrin/CdTeSe/RGO	5.58	206
(0.2 ml)	(0.44)	(0.56)

Hole Transfer Process between CdTe QD-MEHPPV Polymer NP

MEH-PPV: poly[2-methoxy-5-(2-ethylhexyloxy)-1,4phenylenevinylene HDA: Hexadecylamine TGA : Thioglycolic acid

J. Phys. Chem. C 2016, 120, 25142–25150.

Spectroscopic study of Hybrid Nano-composite

Composite with 2.1 nm QDs:

Composite with 3.8 nm QDs

Hole Transfer from 2.1 QDs to PNP is 390 fs Hole transfer from 3.8 nm QD to PNP is 120 ps

Electron and Hole Transfer Processes in C-dots-ZnO Nanocrystals

Carbon dots

Zinc Oxide Nanoparticles

Nanoscale, 2017, 9, 6791–6799

- ✤ The excited electron transfers from LUMO of C-dot to the conduction band of ZnO NP with a rate of $3.7 \times 10^9 \text{ s}^{-1}$
- Hole transfers from valence band of ZnO to HOMO of C-dot with a rate of 3.6 x 10⁷ s⁻¹.

Nanoparticles-Based Energy Transfer

✓ The <u>large size of QD's</u> compared to organic dyes provided design of such configuration where <u>multiple acceptors</u> could interact with a single donor, which <u>enhances FRET</u> <u>efficiency</u> and thus measurement sensitivity.

Issues:

<u>Size</u>, Shape & Composition Dependent Energy Transfer FRET or Non-Forster? Quenching dynamics Kinetic model

Cite this: Nanoscale, 2016, 8, 16034

Functionalized dye encapsulated polymer nanoparticles attached with a BSA scaffold as efficient antenna materials for artificial light harvesting⁺

Bikash Jana, Santanu Bhattacharyya and Amitava Patra*

PVK15B encapsile teonstated NR encapsile teonstate Complex

241 ps **350 ps** E

Estimation of Antenna Effect and effective absorption coefficient

$$AE = (I_{DA340} \cdot f - I_{A340}) / I_{A525}$$

$$\varepsilon_{\rm eff} = AE imes \varepsilon_{\rm A}$$

Antenna Effect.

 I_{DA340} and I_{A340} , I_{A525} are emission intensity of NR encapsulated BSA in presence and absence of PVK (λ_{ex} 340 nm, λ_{ex} 525 nm). 'f' represents the fraction of the total fluorescence coming from the encapsulated NR dye molecules due to energy transfer process. ε_A is the maximum absorption coefficient of the acceptor.

System	Antenna effect	Effective extinction coefficient $(10^4 \times M^{-1} \text{ cm}^{-1})$
PVK NP–NR dye encapsulated BSA	28	73.10
C153 doped PVK NP-NR dye	31	80.93
encapsulated BSA		

Table 2 Light harvesting properties of NR (0.64 μ M) in two complexes

DOI: 10.1002/chem.201601849

Light Harvesting and Generation |Hot Paper|

Light Harvesting and White-Light Generation in a Composite of Carbon Dots and Dye-Encapsulated BSA-Protein-Capped Gold Nanoclusters

Monoj Kumar Barman, Bipattaran Paramanik, Dipankar Bain, and Amitava Patra*[a]

Carbon dots:

1.0x10⁷

5.0x10

0.0

400

500

Wavelength (nm)

600

Intensity (a.u.)

 Carbon dots were synthesized hydrothermally using citric acid and Polyethylenimine, branched (BPEI).

Protein capped Gold nanocluster:

Gold nanocluster (Au NC) capped by BSA protein, were synthesized using BSA and $HAuCl_4$ under basic condition (pH \approx 11).

C-dot		P30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1.0x10 ⁷ - 1.0x10 ⁷ - 5.0x10 ⁶ - 0.0 - 400	e d b a 500 600 Wavelength (nm	
Systems	τ ₁ (α ₁) ns	τ ₂ (α ₂) ns	τ ₃ (α ₃) ns	<τ> ns	Energy Transfer Efficiency (%)	Rate of Energy Transfer (s⁻¹)
C-dots		4.03 (0.28)	13.07 (0.72)	10.54		
C-dot-Au NC	0.47 (0.56)	3.05 (0.22)	13.14 (0.22)	3.83	63.00	1.66 X 10 ⁸
C-dot-C153-Au NC	0.31 (0.77)	2.39 (0.13)	12.78 (0.10)	1.82	83.00	4.50 X 10 ⁸

CONCLUSIONS

☐ The fundamental understanding of luminescent nanomaterials remains a frontier area of research because of potential applications in light harvesting systems.

□Interesting findings reveal that the charge transfer between QD's- polymer NP and C dots-ZnO composites may open up new possibilities in designing of artificial light harvesting system for future applications.

Interesting findings reveal that the efficient energy transfer in polymer nanoparticle- dye assemblies may open up new possibilities in designing of artificial light harvesting system for future applications.

C-dots and Au cluster based materials for light harvesting

Acknowledgements

DAE-SRC Outstanding Investigator Award Unilever Industries private limited, Bangalore

Present Students:

- 1. B. Paramanik, SRF
- 2. M. Barman, SRF
- 3. Rajesh Bera, SRF
- 4. Bikash Jana, SRF
- 5. Bodhisatwa Mondal, JRF
- 6. Dipankar Bain, JRF
- 7. Arnab Ghosh, JRF
- 8. Miss Subarna Maity , JRF
- 9. Avisek Dutta, JRF
- 10. Goutam Ghosh, JRF

- 1. Dr. Piyali Mitra, National Post Doctoral Fellowship, DST.
- 2. Dr. Soma Das, National Post Doctoral Fellowship, DST.

* 1 17Å "And miles to go before I sleep.."

pubs.acs.org/journal/ascecg

Design of CdTeSe—Porphyrin—Graphene Composite for Photoinduced Electron Transfer and Photocurrent Generation

Rajesh Bera, Bikash Jana,[®] Bodhisatwa Mondal, and Amitava Patra*[®]

Department of Materials Science, Indian Association for the Cultivation of Science, 2A & B Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India

Decay dynamics in anisotropic shaped CdS nanocrystals

The decay curves of different shaped CdS QDs are analyzed by stretched exponential function.

 $I(t) = a \exp(-[t/\tau_0]^{\beta})$

 β = stretching exponent

Average life time =
$$\langle \tau \rangle = \left(\frac{\tau_0}{\beta}\right) \Gamma\left(\frac{1}{\beta}\right)$$

$$I(t) = b \exp(-t/\tau_0) + a \exp(-[t/\tau_0]^{\beta})$$

Decay parameters for different shape CdS NCs

System	Reduce	۵	τ ₀	β	b	% fast	<τ>
	d χ²					component	(ns)
Sphere(a)	0.89	2500	4.1	0.4	110	4%	13.63
Rod(b)	0.9	1320	0.49	0.31	3876	74.6%	3.95
Triangle(c)	0.85	1400	0.19	0.27	4208	75.1	2.96

a

10000

1000

% fast component = 100×b/(a+b)

Photoswitching and Thermoresponsive Properties of Conjugated Multi-chromophore Nanostructured Materials

Santanu Bhattacharyya, Bikash Jana, Sumanta Sain, Monoj Kumar Barman, Swapan Kumar Pradhan, and Amitava Patra*

Small, 2015 11, 6317–6324.

QTH in THF (a), QTH fiber (b), and QTH flakes (c)

System	<τ ₁ > (ps)	<τ ₁ > (ps)	<τ> (ps)
QTH in THF	430 (100%)		430
QTH Fiber	470 (74%)	1040 (26%)	618
QTH Flakes	490 (28%)	1750 (72%)	1400

Increases indicating H-aggregation in Flakes

System	Residual anisotropy, r(α)		Initial anisotropy, r(0)	Re- orientation time (ps)	
QTH in THF	0		0.26	184	
QTH Fiber	0.08		0.26	158	
QTH Flakes	0.15	,	0.21	117	

Increases hindered rotation of chromophoric units from Fiber to Flakes

Semiconductor QD

I I . 91...9

....

...

Graphene based hybrid materials

Graphene-inorganic hybrid materials

ACS Sustainable Chem. Eng., 2016, 4, 1562–1568. J. Mater. Chem. C, 2016, 4, 6027-6036. J. Phys. Chem. C, 2013, 117 (45), 23987–23995. ACS Appl. Mater. Interfaces, 2015, 7, 13251–13259. ACS Sustainable Chem. Eng., 2017, 5, 3002–3010

Graphene-organic hybrid materials

Dye doped PNP, JPC

JPCC

PNP- Au NP, PCCP

JPCC, 2016

PNP-GO, ChemPhyChem, 2017

Self assembled nanostructures, Small

In the case of photovoltaic applications, photocurrent generation occurs due to charge migration of photogenerated electrons and holes of semiconductor nanoparticles toward opposite electrodes.

However, the photogenerated electrons and holes of semiconductor NP are used for reduction and oxidation reactions to facilitate chemical conversion in the case of photocatalysis.

π -conjugated polymer nanoparticle

Our focus on understanding......

Rotational dynamics of dye encapsulated polymer nanoparticle
 Exciton dynamics and exciton diffusion
 Charge transfer dynamics between polymer nanoparticle-QD hybrids
 Energy transfer between Polymer nanoparticle-porphyrin hybrids
 Electronic process in self assembled multichromophoric system

Ultrafast spectroscopic study

In composite, the appearance of the faster component (390 fs) is attributed to the hole Transfer from QDs to PNP.

Transient Absorption in 3.8 nm QDs and Composite:

Kinetic fitting parameters for bleach recovery at 570 nm for CdTe (3.8 nm), MEHPPV PNPs and composite:

Sample	τ_1^{g}	$ au_2^{g}(ps)$	$ au_1^{r}(ps)$	$ au_2^{ m r}(m ps)$	$ au_3^{ m r}(ps)$
CdTe (3.8 nm)	>100fs	0.4	4	20	>400
	(60%)	(40%)	(35%)	(21%)	(44%)
MEHPPV PNPs	>100fs	5 (55%)	-	95	>400
	(45%)			(63%)	(37%)
Composite	>100fs	0.6	12	120	>400
	(70%)	(30%)	(30%)	(23%)	(47%)

Fig. 3 Spectral overlap between the emission spectrum of PVK PNPs (a) and absorption spectrum of C153 (b), emission spectrum of C153 (c) and absorption spectrum of NR (d).

