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The development of the efficient artificial light harvesting system is a highly active area of

research in order to mimic natural photosynthesis and convert solar energy into renewable
energy.

Emphasis has been given to design and develop efficient nanomaterials based light harvesting
Systems

Several strategies have been undertaken
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The efficient antenna system should have very
high molar extinction co-efficient, excellent

photostability and ability to transfer its energy.
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=Exciton dynamics
=Charge transfer
"Energy Transfer

Most fundamental
processes in
Light harvesting systems:

Exciton formation

Recombination Charge Separation Energy Transfer
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In the case of photovoltaic applications, photocurrent generation occurs due to charge
migration of photo generated electrons and holes of semiconductor nanoparticles toward

opposite electrodes.

However, the photo generated electrons and holes of semiconductor NP are used for reduction
and oxidation reactions to facilitate chemical conversion in the case of photocatalysis.
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J Exciton dynamics

dInterfacial charge transfer in hybrid system

JEnergy transfer in hybrid system

J Conclusions




CHEMICAL
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Nanoscale Strategies for Light Harvesting

Simanta Kundu and Amitava Patra™

Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India

ABSTRACT: Recent advances and the current status of challenging light-harvesting
nanomaterials, such as semiconducting quantum dots (QDs), metal nanoparticles,
semiconductor—metal heterostructures, 7-conjugated semiconductor nanoparticles,
organic—inorganic heterostructures, and porphyrin-based nanostructures, have been
highlighted in this review. The significance of size-, shape-, and composition-dependent
exciton decay dynamics and photoinduced energy transfer of QDs is addressed. A
fundamental knowledge of these photophysical processes is crucial for the development of
efficient light-harvesting systems, like photocatalytic and photovoltaic ones. Again, we have
pointed out the impact of the metal-nanoparticle-based surface energy transfer process for
developing light-harvesting systems. On the other hand, metal—semiconductor hybrid
nanostructures are found to be very promising for photonic applications due to their
exciton—plasmon interactions. Potential light-harvesting systems based on dye-doped 7-
conjugated semiconductor polymer nanoparticles and self-assembled structures of -
conjugated polymer are highlighted. We also discuss the significance of porphyrin-based
nanostructures for potential light-harvesting systems. Finally, the future perspective of this research field is given.




Exciton Dynamics

Issues:

*How the shape, size and composition of QDs influence the carrier relaxation

dynamics of photo-excited QDs.

*How the surface trap state influences decay kinetics due to surface
curvature and lattice strain

*A stochastic model of carrier relaxation dynamics of QDs has been proposed.



Relaxation Dynamics of Anisotropic Shaped CdS Nanoparticles
Suparna Sadhu and Amitava Patra*
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Lattice Strain Controls the Carrier Relaxation Dynamics in Cd,Zn,_,S
Alloy Quantum Dots

Suparna Sadhu and Amitava Patra™
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Stochastic model for decay dynamics:
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n; = the number of surface trap states participate in luminescence quenching
m, average number of surface ftraps in quenching; m, average number of surface sites for NR



Overview of the values of carrier relaxation parameters using Stochastic Model

System X2 A ki (ns) B k. m,  ky(ns?) m/
Sphere | 0.97 [0.029 0.151 0.098 0.13 11.2 1.27 1.1
Rod 0.91 (0.017 0.129 0.119 0.132 219 1.29 1.99
0.87
Triangle
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f

m, average number of surface traps;
m, average number of surface sites
for NR relaxation

n, = the number of surface trap states
participate in luminescence quenching
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dInterfacial Charge Transfer in Hybrid Systems

» Photoinduced Electron Transfer
» Photoinduced Hole Transfer
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Electron Transfer Process in QD-Porphyrin-GO Hybrid System

Reduced Graphene Oxide(RGO) TEM images of CdTeSe
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ACS Sustainable Chem. Eng. 2017, 5, 3002-3010



Ultrafast electron transfer process

Counts

Porphyrin

Electron transfer rate is 17.4 x 10-2 ps-1
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Hole Transfer Process between CdTe QD-MEHPPV Polymer NP
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Spectroscopic study of Hybrid Nano-composite

Composite with 2.1 nm QDs:
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Electron and Hole Transfer Processes in C-dots-ZnO Nanocrystals

Carbon dots
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Thickness ~115 nm
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+» The excited electron transfers from LUMO of C-dot to the conduction band
of ZnO NP with a rate of 3.7 x 10° s1

«»* Hole transfers from valence band of ZnO to HOMO of C-dot with a rate of
3.6 x 107 s1,



Nanoparticles-Based Energy Transfer
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1 (R
kT (I’) — &
o\ T

Excitation

Donor Acceptor

Fluorescein Rhodamine

R, =0.211x’n ¢, . J(D)] °

6

c nR,
400 500 - 600 700 n R 6 + r 6
A 0 n

v'The large size of QD’s compared to organic dyes provided design of such configuration

where multiple acceptors could interact with a single donor, which enhances FRET
efficiency and thus measurement sensitivity.

Issues:
Size, Shape & Composition Dependent Energy Transfer

FRET or Non-Forster?
Quenching dynamics
Kinetic model



CrossMark Functionalized dye encapsulated polymer
nanoparticles attached with a BSA scaffold
as efficient antenna materials for artificial

light harvesting+

Cite this: Nanoscale, 2016, 8, 16034

Bikash Jana, Santanu Bhattacharyya and Amitava Patra*
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Estimation of Antenna Effect and effective absorption coefficient

Antenna Effect, AE = (Ipazaof — Iaza0)/Ias25

Eoif = AE X £,

loazao @Nd laz40, 1asos @are emission intensity of NR encapsulated BSA in presence and absence
of PVK (A,340 nm, A_,525 nm). ‘f’ represents the fraction of the total fluorescence coming
from the encapsulated NR dye molecules due to energy transfer process. €, is the maximum
absorption coefficient of the acceptor.

Table 2 Light harvesting properties of NR (0.64 uM) in two complexes

Effective
extinction
Antenna coefficient
System effect (10" x M~ " em™")
PVK NP-NR dye encapsulated BSA 28 73.10
C153 doped PVK NP-NR dye 31 80.93

encapsulated BSA
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@ Light Harvesting and White-Light Generation in a Composite of
Carbon Dots and Dye-Encapsulated BSA-Protein-Capped Gold

Nanoclusters

Monoj Kumar Barman, Bipattaran Paramanik, Dipankar Bain, and Amitava Patra*“
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Carbon dots:
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Systems T, T, T3 <> Energy Rate of Energy
(o) (o) (o5) ns Transfer Transfer
ns ns ns Efficiency (%) (s1)
C-dots 4.03 13.07 10.54
(0.28) (0.72)
C-dot-Au NC 0.47 3.05 13.14 3.83 63.00 1.66 X 108
(0.56) (0.22) (0.22)
C-dot-C153-Au 0.31 2.39 12.78 1.82 83.00 4.50 X 108
NC (0.77) (0.13) (0.10)



CONCLUSIONS

(J The fundamental understanding of luminescent nanomaterials remains a frontier area
of research because of potential applications in light harvesting systems.

Qinteresting findings reveal that the charge transfer between QD’s- polymer NP and C
dots-ZnO composites may open up new possibilities in designing of artificial light
harvesting system for future applications.

Qinteresting findings reveal that the efficient energy transfer in polymer nanoparticle- dye
assemblies may open up new possibilities in designing of artificial light harvesting system
for future applications.

LC-dots and Au cluster based materials for light harvesting
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Decay dynamics in anisotropic shaped €CdS nanocrystals

The decay curves of different shaped CdS QDs

are analyzed by stretched exponential function. 10000 a
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Decay parameters for different shape CdS NCs = ;
System | Reduce | a To B b % fast <> g 100 _
d x2 component  (ns) |
Sphere(a) | 0.89 [2500 41 04 110 4% 13.63 10 4
Rod(b) 09 |1320 049 031 3876 746%  3.95 0 40 60
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Photoswitching and Thermoresponsive Properties
of Conjugated Multi-chromophore Nanostructured

Materials
Santanu Bhattacharyya, Bikash Jana, Sumanta Sain, Monoj Kumar Barman,

Swapan Kumar Pradhan, and Amitava Patra*
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Small, 2015 11, 6317-6324.
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Normalized PL (a.u.)
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Graphene based hybrid materials

Graphene-inorganic 1 Graphene-organic

hybrid materials ~ hybrid materials

ACS Sustainable Chem. Eng., 2016, 4, 1562—-1568.
J. Mater. Chem. C, 2016, 4, 6027-6036.

J. Phys. Chem. C, 2013, 117 (45), 23987-23995.
ACS Appl. Mater. Interfaces, 2015, 7, 13251-13259.

ACS Sustainable Chem. Eng., 2017, 5, 3002-3010
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In the case of photovoltaic applications, photocurrent generation occurs due to charge
migration of photogenerated electrons and holes of semiconductor nanoparticles toward

opposite electrodes.

However, the photogenerated electrons and holes of semiconductor NP are used for reduction
and oxidation reactions to facilitate chemical conversion in the case of photocatalysis.

Photovoltaics Photocatalysis




rn-conjugated polymer nanoparticle

Our focus on understanding......

> Rotational dynamics of dye encapsulated polymer nanoparticle

» Exciton dynamics and exciton diffusion

» Charge transfer dynamics between polymer nanoparticle-QD hybrids
» Energy transfer between Polymer nanoparticle-porphyrin hybrids

» Electronic process in self assembled multichromophoric system



Ultrafast spectroscopic study
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In composite, the appearance of the faster component (390 fs)
is attributed to the hole Transfer from QDs to PNP.



Transient Absorption in 3.8 nm QDs and Composite:

—— Addition 1670 ps

550 600 650 700
Wavelength (nm)

500

Kinetic fitting parameters for bleach recovery at 570
nm for CdTe (3.8 nm), MEHPPV PNPs and composite:

Sample 70 | ©(Ps) | T(PS) | T(PS) | Ts(pS)
CdTe (3.8 nm) >100fs 0.4 4 20 >400
(60%) (40%) | (35%) | (21%) (44%)

MEHPPV PNPs >100fs | 5 (55%) - 95 >400
(45%) (63%) (37%)

Composite >100fs 0.6 12 120 >400
(70%) | (30%) | (30%) | (23%) | (47%)




Fig. 3 Spectral overlap between the emission spectrum of PVK PNPs
(a) and absorption spectrum of C153 (b), emission spectrum of C153 (c)

and absorption spectrum of NR (d).
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